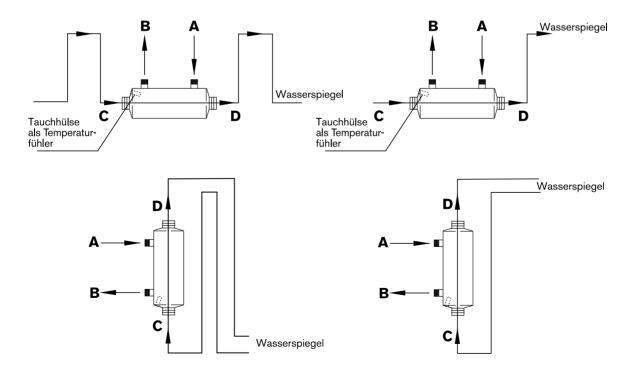
Montage und Installationsanweisung

Heizungswärmetauscher der Reihe HWT-NWT-TWT-SHWT

Der Edelstahlwärmetauscher ist ein Kreuz-Wärmetauscher mit einem liegenden Edelstahlrohrwendel und dadurch auch geeignet für hohen Druck – primärseitig max. Druck 10 bar (A/B) und sekundärseitiger max. Druck 3,0 bar(C/D). Der Durchfluss erfolgt, wie aus der Schemenzeichnung ersichtlich, von A nach B und von C nach D.

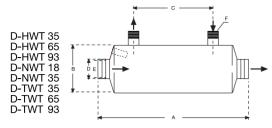
1. Montagehinweise.

- 1.1 Der Edelstahlwärmetauscher (Material AISI 316 / V4A) ist frostsicher auf zu stellen.
- 1.2 Die Montage des Wärmetauschers über dem Wasserspiegel hat mittels einer Schleife zu erfolgen, um einen Leerlauf zu vermeiden. Bei der Montage unter dem Wasserspiegel ist eine Leerlaufsituation nicht möglich (siehe Skizze).
- 1.3 Es ist darauf zu achten, dass der Wärmetauscher keinesfalls im Leerlauf betrieben wird (nur mit Filterpumpe).
- 1.4 Um Korrosion zu verhindern , ist darauf zu achten, dass in den Wärmetauscher keine eisenhaltige Metalle eingeschwemmt werden können (Kontaktkorrosion).
- 1.5 Um außenliegende Korrosionsschäden zu verhindern, muss eine Befestigung des Wärmetauschers mit einer Edelstahl oder Kunststoffhalterung vorgenommen werden. Des weiteren ist darauf zu achten, dass kein eisenhaltiges Tropfwasser auf den Wärmetauscher gelangt (Kontaktkorrosion).
- 1.6 Sollte der Wärmetauscher nach Inbetriebnahme keine Leistung abgeben, dann muss die Primärseite (A/B) nochmals gut entlüftet werden. Die Temperaturdifferenz zwischen A und B muss ca. 10 20 °C betragen, je nach Pumpenleistung.
- 1.7 Es muss unbedingt darauf geachtet werden, dass bei Anlagen unter und über dem Wasserspiegel bei einer Überwinterung der Wärmetauscher immer voll Wasser sein muss (Korrosionsgefahr). Bei Anlagen, wo Frost auftreten kann, muss der Wärmetauscher komplett entleert sein. Dabei ist die stehende Anordnung zu empfehlen.


2. Zur Beachtung.

Es ist darauf zu achten, dass eine Wasserqualität erreicht wird, die im folgendem Bereich liegen muss:

Edelstahl V4A: Chloridgehalt max. 500 mg/l
Freies Chlor max. 3 mg/l
Freies Chlor max. 3 mg/l
Freies Chlor max. 6,8 - 8,2
Brom max. 6 mg/l
Freies Chlor max. 0 mg/l
Freies Chlor max. unbegrenzt
PH max. 6,8 - 8,2
PH max. 6,8 - 8,2
Brom max. 6 mg/l
Salz bis 35 g/l


Ansonsten kann es zu einer Zerstörung des Wärmetauschers führen.

Entkeimungsgeräte sind grundsätzlich nach dem Wärmetauscher zu installieren, und zwar so, dass bei Verwendung von Chemikalien (z.B Chlorgas) während der Stillstandzeit keine Gase in den Wärmetauscher eindringen können.

3. Für eventuelle spätere Verwendungszwecke legen sie bitte diese Installationsanweisung den Bauakten bei. Danke

WASSERWÄRMETAUSCHER AUS EDELSTAHL UND TITAN **SCAMBIATORE CALORE IN ACCIAIO INOX E TITANIO** HEAT EXCHANGER, MADE OF ALLOY STEEL AND TITANIUM

TYPE		Α	В	С	D	E	F
kcal/h x	1000	mm	Ø	mm	mm	Zoll	Zoll
D-HWT	35	385	125	205	NW/50	11/2"	3/4"
D-HWT	65	680	125	495	NW/50	11/2"	1"
D-HWT	93	780	160	590	NW/60	2"	1"
D-HWT	122	1050	160	370	NW/60	2"	1"
D-HWT	182	1370	160	530	NW/60	2"	1"

D-NWT	18	680	125	495	NW/50	11/2"	1"
D-NWT	35	1050	160	820	NW/50	11/2"	1"

D-TWT	35	385	125	205	11/2" AG	3/4"
D-TWT	65	680	125	495	11/2" AG	1"
D-TWT	93	780	160	590	2"AG	1"

D-SHWT 9/35	605	125	197	NW/50	11/2"	3/4"	
D-SHWT 18/35	935	125	205/495	NW/50	11/2"	3/4"-1	→ (N

TYP kcal x 1		Leistung in kW		Mindest Pumpen- leistung Heizung	Verlust Heizung	Mindest Pumpen- leistung Badewasser	Ver l ust Badewasser		
TYPE kcal x 1		Capacity in kW		Capacity in kW		Pump capacity heating	Loss heating	Pump capacity s. pool water	Loss s. pool water
		90°	60°	m³/h	bar	m³/h	bar		
D-HWT	35	42	24	2	0,18	10	0,10		
D-HWT	65	76	43	3	0,22	12	0,18		
D-HWT	93	105	60	5	0,40	15	0,22		
D-HWT	122	146	83	2x3	0,25	20	0,60		
D-HWT	182	210	120	2x5	0,30	25	1,00		
D-NWT	18	20 bei !	50°-40°	2	0,10	10	0.18		

DINVVI	00	40 001	50 +0	0,0	0,00	12	0,00
D-TWT	35	42	24	3	0,20	12	0,10
D-TWT	65	76	43	4	0,20	15	0,22
D-TWT	93	105	60	6	0,40	18	0,22

D-SHWT 9/35	40° 90° Solar 10 Heizung 42	2 x 2	0,18	10	0,10
D-SHWT 18/35	Solar 20 Heizung 42	2 x 2	0,22	10	0,18

Modelle:

D-NIMT

D-HWT: Heizungswärmetauscher D-NWT: Niedertemperaturwärmetauscher

40 boi 50°-40°

D-TWT: Titanwärmetauscher D-SHWT: Solarheizungswärmetauscher

Material:

V4A, Gebeizt und Elektropoliert Titan Silber lackiert

Betriebsdruck: Heizungsseitig 10 bar Badewasserseitig 3 bar

Bauart:

Außenmantel mit eingeschweißter Rohrschlange und Tauchhülse zur elektronischen Temperaturmessung. Interne eingebaute Wasserumleitung zur optimalen Erwärmung des Badewassers.

Beheizung:

Die Beheizung des Wärmetauschers erfolgt je nach Typ über ein Zentrales oder Niedertemperaturheizungssystem.

Inbetriebnahme:

Siehe Installationsnachweis

0.35

D-HWT: Scambiatore di calore D-NWT: Scambiatore calore per bassa

D-TWT: Scambiatore di calore in titanio D-SHWT: Scambiatore di calore a doppio circuito

(NEW)

(War

U 3U

Materiali:

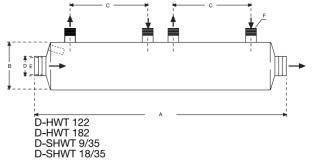
Aisi 316, finitura a specchio Titanio argento laccato

Pressione esercizio:

Riscaldamento 10 bar Acqua piscina 3 bar

Tipo di costruzione:

Manto esterno con serpentina saldato e pozzetto di controllo per misurazione elettronica della temperatura. Deviazione interna dell'acqua piscina per un miglior riscaldamento della stessa.


Riscaldamento:

Il riscaldamento dello scambiatore calore avviene a seconda del tipo attraverso il sistema

centrale oppure quello a bassa temperatura.

Messa in funzione:

vedi istruzioni per l'installazione

Types: D-HWT: heating exchanger

D-NWT: low temperature heat exchanger

D-TWT: Titan heat exchanger D-SHWT: solar and heating exchanger

Aisi 316, mirror finishing Titan silver var nished

Operating pressure:

for heating: 10 bar for swimming-pool water: 3 bar

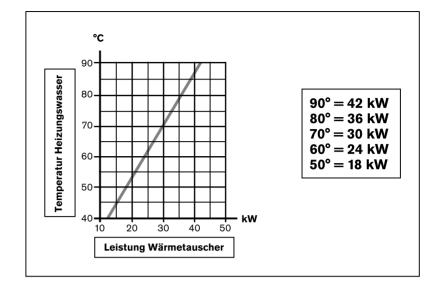
Assembly:

Outer casing with welded tube and immersion box for electronically measuring

the temperature.
Internal tailor-made water pipe for optimal heating of swimming-pool water.

Heating:

The heating of the heat exchanger is obtained, depending on type, by means of a central or low temperature heating svstem.

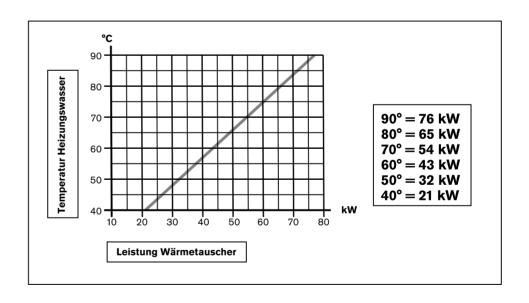

Bringing the machinery into service: See installation information

Wasserwärmetauscher

D-HWT 35		42 kW
D-HWT 65		76 kW
D-HWT 93		105 kW
D-HWT 122		140 kW
D-HWT 182		209 kW
D-NWT 18		20 kW
D-NWT 35		40 kW
D-TWT 35		42 kW
D-TWT 65		76 kW
D-TWT 93		105 kW
D-SHWT 9/3		10-42 kW
D-SHWT 18/3	35	20-42 kW

Тур **D - HWT** 35

42 kW

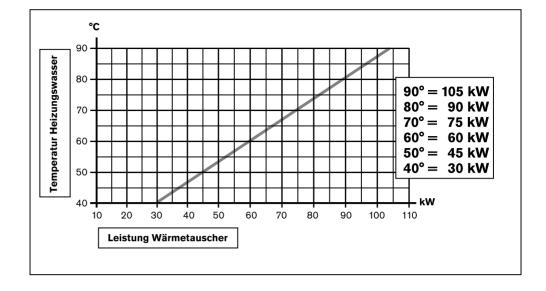

Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 0,6 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade- und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 10 m³/h und auf eine Leistung der Heizungspumpe von 2 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,18 bar Druckverlust Badewasser: 0,10 bar.

Тур **D - HWT** 65

76 kW

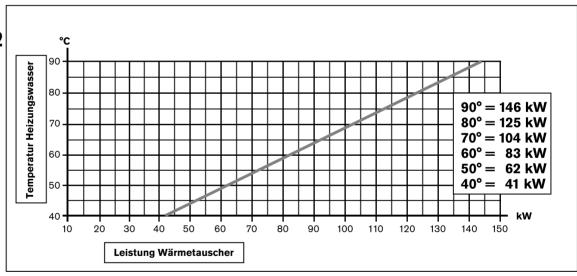

Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 1,1 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade- und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 12 m³/h und auf eine Leistung der Heizungspumpe von 3 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,18 bar Druckverlust Badewasser: 0,22 bar.

Typ **D - HWT 93**

105 kW

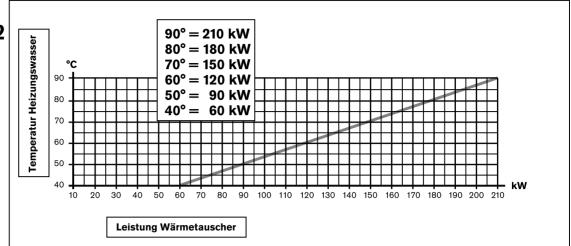


Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 1,5 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade- und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 15 m³/h und auf eine Leistung der Heizungspumpe von 5 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,40 bar Druckverlust Badewasser: 0,22 bar.

Typ D - HWT 122146 kW

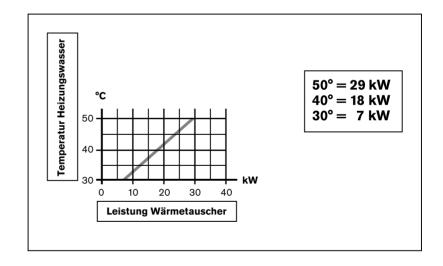


Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 2,1 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade- und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 20 m³/h und auf eine Leistung der Heizungspumpe von 2 x 3 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,25 bar Druckverlust Badewasser: 0,60 bar.

Typ D - HWT 182210 kW

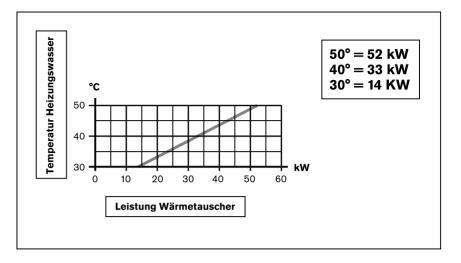


Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 3 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Badeund Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 25 m³/h und auf eine Leistung der Heizungspumpe von 2 x 5 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,30 bar Druckverlust Badewasser: 1,0 bar.

Niedertemperatur Typ D - NWT 18

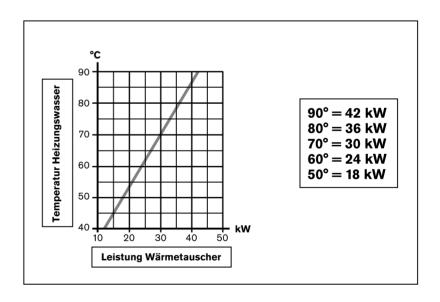

Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 1,1 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade- und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 10 m³/h und auf eine Leistung der Heizungspumpe von 2 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,10 bar Druckverlust Badewasser: 0,18 bar.

Niedertemperatur Typ D - NWT 35

40 kW

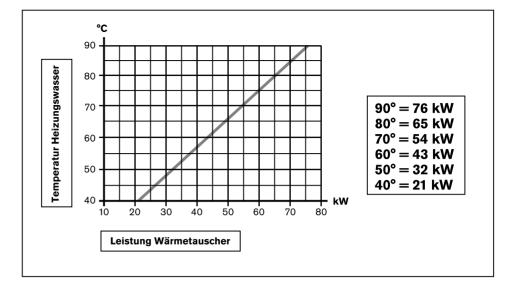

Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 1,9 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade- und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 12 m³/h und auf eine Leistung der Heizungspumpe von 3,6 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,35 bar Druckverlust Badewasser: 0,30 bar.

Titan Typ D - TWT 35

42 kW

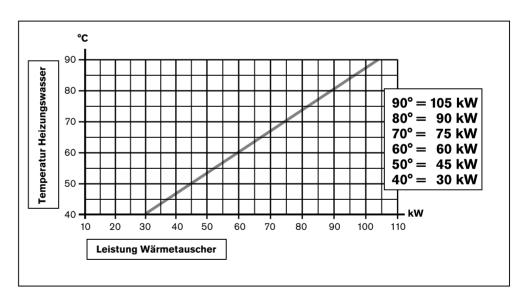

Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 0,6 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade- und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 12 m³/h und auf eine Leistung der Heizungspumpe von 3 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,20 bar Druckverlust Badewasser: 0,10 bar.

Titan Typ D - TWT 65

76 k\//

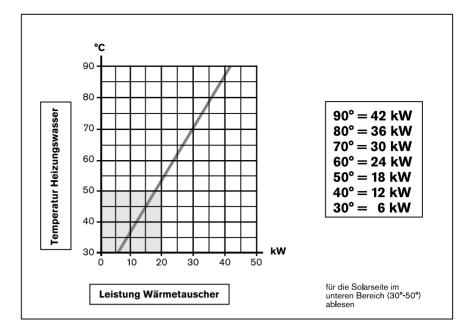

Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 1,1 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade- und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 15 m³/h und auf eine Leistung der Heizungspumpe von 4 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,20 bar Druckverlust Badewasser: 0,22 bar.

Тур **D - TWT 9**3

105 kW

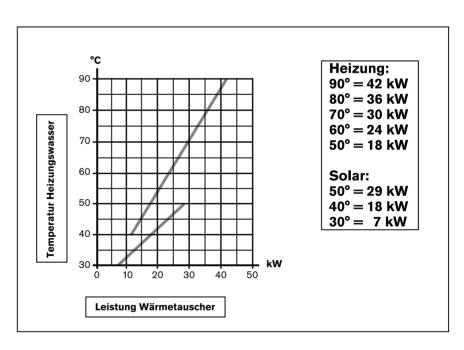

Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 0,6 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade - und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 18 m³/h und auf eine Leistung der Heizungspumpe von 6 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,40 bar Druckverlust Badewasser: 0,22 bar.

Typ D - SHWT 9/35

10/42 kW



Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 0,6 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade- und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 10 m³/h und auf eine Leistung der Heizungskreisläufe von 2 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,18 bar Druckverlust Badewasser: 0,10 bar.

Typ D - SHWT 18/35 20/42 kW

Diese Leistungskurve setzt eine Badewassertemperatur von 20 °C voraus. Steigt diese Temperatur, muss ein Leistungsverlust von 0,6 kW pro °C berechnet werden (auch aus dem Diagramm ersichtlich), weil der Temperaturunterschied zwischen Bade - und Heizungswasser die Leistung beeinflusst. Liegt die Temperatur im Schwimmbecken unter 20°, steigt die Leistung im gleichen Verhältnis.

Die Nominalwerte der Leistungskurve beziehen sich auf eine Leistung der Badewasserpumpe von 10 m³/h und auf eine Leistung der Heizungskreisläufe von 2 m³/h. Steigert man die Durchflussmenge in beiden Wasserkreisläufen um 10%, so erreicht man eine Leistungssteigerung von ca. 5%.

Druckverlust Heizung: 0,22 bar Druckverlust Badewasser: 0,18 bar.